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A Discrete-Time Multivariable Neuro-Adaptive
Control for Nonlinear Unknown Dynamic Systems
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Abstract—First, we assume that the controlled systems contain
a nonlinear matrix gain before a linear discrete-time multivari-
able dynamic system. Then, a forward control based on a nom-
inal system is employed to cancel the system nonlinear matrix gain
and track the desired trajectory. A novel recurrent-neural-network
(RNN) with a compensation of upper bound of its residue is applied
to model the remained uncertainties in a compact subset
. The
linearly parameterized connection weight for the function approx-
imation error of the proposed network is also derived. An e-modifi-
cation updating law with projection for weight matrix is employed
to guarantee its boundedness and the stability of network without
the requirement of persistent excitation. Then a discrete-time mul-
tivariable neuro-adaptive variable structure control is designed to
improve the system performances. The semi-global (i.e., for a com-
pact subset
) stability of the overall system is then verified by the
Lyapunov stability theory. Finally, simulations are given to demon-
strate the usefulness of the proposed controller.

Index Terms—Discrete-time system, Lyapunov stability theory,
multivariable variable structure control, recurrent-neural-net-
work.

I. INTRODUCTION

I T is known that a conventionally designed linear controller
does not achieve an adequate performance over a variety of

operating regimes, especially if the system is highly nonlinear
[1]. It is also known that a robust controller design based on a
nominal system is not enough to stabilize the system with huge
uncertainty [2]. There is a wide class of nonlinear multivariable
systems that can be modeled by an interconnected nonlinear ma-
trix gain and a linear dynamic system, e.g., Wiener model, Ham-
merstein model, hysteresis model [3]–[5]. Due to the progress
of microcomputer, a digital control is more implementable [7],
[8]. In this paper, a nonlinear matrix gain that is not necessarily
memoryless, combines with a linear discrete-time multivariable
dynamic system to represent a class of nonlinear multivariable
systems.

In the beginning, a forward control based on a nominal system
is applied to cancel the system nonlinearity and track the desired
trajectory. A forward control is simple and very acceptable for
industry. In general, a suitable design of forward control can
make a poor dynamic system become a well-controlled system
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[4]–[6], [8]–[10]. The more accurate a nominal model for the
controlled system is used, the more excellent tracking perfor-
mance is achieved. If the tracking performance using a forward
control or a robust control can’t satisfy the specific requirement,
a neural-network for a compact subsetis used to approximate
the remained uncertainties which are dynamic.

Most people used a multilayer-neural-network, combined
with the tapped delays for the input, and a backpropagation
training algorithm to deal with the dynamic problem [11]–[13].
On the other hand, recurrent-neural-networks (RNNs) have
important capabilities not found in multilayer, such as dynamic
mapping. Therefore, the RNN is better suited for dynamic sys-
tems than the multilayer-neural-network [14]–[18]. An RNN
can cope with time-variant input or output through its own nat-
ural temporal operation. Hence, the less number of neurons for
the RNN can model the uncertainties to achieve the required ac-
curacy (e.g., [14]–[18] or Remark 6). To compensate the residue
of RNN, a simple network is established to estimate its upper
bound for the controller design. The proposed network is called
“Recurrent-Neural-Network-with-Residue-Upper-Bound-
Compensation (RNNRUBC)” (see Fig. 1). Besides, the sta-
bility of recurrent-neural-network-based control system is
difficult because the corresponding dynamics are nonlinear in
adjustable connection weights. However, the linearly param-
eterized weight for the function approximation error of the
proposed network is derived. As the authors know, this is the
first time to construct a neural-network with these features.

Furthermore, an e-modification updating law with projection
[2], [19], [20] for the weight matrix is designed to ensure its
boundedness and the stability of network without the require-
ment of persistent excitation. The purpose of using a projec-
tion algorithm for the feedback weight matrix between the neu-
rons is to ensure a stable neural-network. Because the variable
structure control possesses the following advantages: fast re-
sponse, less sensitivity to uncertainties and easy implementation
[21]–[24], a discrete-time multivariable neuro-adaptive variable
structure control (DMNAVSC, see Fig. 2) is designed to im-
prove the system performances. Under mild conditions, the con-
vergent region for tracking error of the proposed control can be
smaller than that of robust variable structure control [compare
Fig. 4(d) and Fig. 5(d)]. As compared with the robust variable
structure control, the proposed controller can deal with extra
uncertainties to attain an excellent tracking result without the
occurrence of chattering control input [see Figs. 4(c) and 5(d)].
Furthermore, without the prior estimation of weight matrix (e.g.,
off-line training) the initial value of weight matrices can be set to
zero (i.e., no compensation for excess uncertainties with respect
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Fig. 1. Structure of RNNRUBC.

to robust variable structure control). This characteristic makes
the suggested control more practical because many neural net-
work controls have a problem to assign an initial value for the
connection weight (e.g., [11]–[15], [17], [18], [20]).

Finally, the semi-global stability (i.e., for a compact subset
) of the overall system is verified by the Lyapunov stability

theory. Simulations are also given to confirm the usefulness of
the proposed control. The proposed scheme indeed improves the
performances of some robust control schemes.

II. PROBLEM FORMULATION

Consider a class of nonlinear discrete-time multivariable sys-
tems:

(1)

where the signals , and , the mapping
: is continuous, the map-

ping is known and invertible, is a backward-time shift
operator (i.e., ), denotes d-step delay
operator and the polynomial matrices

, are described as
follows [7]:

(2a)

(2b)

where matrix parameters , for , are
known, , , are known but
bounded. Let . It is assumed that:

A1: and are known.
A2: , are left coprime, , ,

are stable matrices, and det .
A3: The unknown mapping satisfies the following

equality:

(2c)

where , , are
bounded, : , ,
where is known, as

which is a compact
set. The symbol denotes usual Euclidean-norm.

Remark 1: The signal is not available. It is not neces-
sarily to assume that the real linear system must be minimum

phase [5]. Assumption A2 ensures that the linear system is con-
trollable and observable [7] and that the existence of a forward
control and the boundedness of uncertainties [see (15) and (18)].
Assumption A3 shows that in a compact set the nonlinear vector
of uncertainty relative to the nominal value is linearized and has
a norm-bounded value for the order equal to or greater than two.

Remark 2: For example, the known matrix mapping has
the following entries:

for (3)

where are known and denotes
an input signal for the mapping . Another example is a
linear mapping, e.g., the argument in (2c) greater than and equal
to two are set to zero, i.e., . These two examples
satisfy Assumption A3 for

The objective of this paper is to construct a discrete-time mul-
tivariable neuro-adaptive control (DMNAC) for a class of
nonlinear multivariable discrete-time systems in the presence of
uncertainties caused by , ,

which are not necessarily small. A forward control, i.e.,
as , is first employed to cancel the map-

ping and track the desired trajectory that is known and
bounded. If the tracking performance using a forward control or
a robust control does not satisfy the specific requirement, a RN-
NRUBC (see Fig. 1) is applied to model the remained uncertain-
ties for their input belonging to a compact subset . Then
a discrete-time multivariable neuro-adaptive variable structure
control (DMNAVSC) is designed to enhance the tracking
performance (allude to Fig. 2). Finally, the semi-global stability
(i.e., ) of the overall system is verified by the Lya-
punov stability theory (see Fig. 2).

III. RECURRENTNEURAL NETWORK WITH RESIDUE UPPER

BOUND COMPENSATION

In this section, the RNNRUBC will be introduced such that
the nonlinearly parameterized connection weight for the func-
tion approximation error is changed into a linearly parameter-
ized form. The structure of RNNRUBC is presented in Fig. 1
that performs as an approximator described in the following ma-
trix form:

(4)

where

and denote output-hidden weight matrix,
hidden-input weight matrix, recurrent weight matrix, input
vector with a known constant, backward-time shift operator,
i.e.,
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Fig. 2. Control block diagram of the overall system.

where

and sigmoid function with entry

where

respectively. If , then the network becomes a multi-
layer-neural-network.

The universal approximation theory is stated as follows:
Theorem 1 (e.g., [11]–[13], [17]): Suppose (a

compact subset of ), : is a continuous function
vector. For an arbitrary constant , there exists an integer
(the number of hidden neurons) and real constant matrices,

and , where such
that

(5)

where denotes the Frobenius norm (i.e.,
tr tr , , denotes the
approximation error vector satisfying , ,
and is the same as (4).

Remark 3: The constant matrices in Theorem 1 are not
unique and satisfy the following inequalities:

where , , and are known. The RNNRUBC is
a dynamic mapping. However, the multilayer-neural-network is
a static mapping. Furthermore, the condition
is required for a stable neural-network. Therefore, an updating
law for can be modified as a project algorithm [19], [20]
to ensure an effective learning.

The following lemma expresses the function approximation
error in a linearly parameterized form.

Lemma 1: Consider the function approximation error:

(6)

where

(7)

with denoting a sum of order terms equal to and greater
than two of the argument

diag

Proof: Subtracting (5) from (4) gives

(8)

where and . Taylor expansion
about yields

(9)
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Fig. 3. Responses of forward control: (a)r (t) (. . .), y (t) (—); (b) r (t)
(. . .), y (t) (—); (c) u (t) (. . .), u (t) (—).

Substituting from (9) into (8) gives

(10)

Substituting the relation , , and
into (10) yields

(11)
Simplifying (11) gives the results (6) and (7). Q.E.D.

Remark 4: The approximation is used in
the control law to cancel the unknown nonlinear function .
The first and second term of are canceled by
the updating law of weights , and . Although
the residue is unknown, an upper bound of
can be achieved by the following lemma.

Lemma 2: The residue term can be bounded by
the following inequality:

(12)
where the unknown parameter vector is
bounded and the known function

Proof: From (9) and triangular inequality, the high-order
terms are bounded by

(13)
where

and
From (7) and (13), is then bounded by

(14)
where and . Q.E.D.
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Fig. 4. Responses of robust variable structure control:. (a)r (t) (. . .), y (t) (—); (b) r (t) (. . .), y (t) (—); (c) u (t) (. . .), u (t) (—); (d) s (t) (. . .), s (t)
(—).

Remark 5: Although is unknown, an updating law
for is designed to compensate the upper bound of this
residue, i.e., . Similar as Remark 3,

. Furthermore, without using an up-
dating law of but using the estimation of from (14)
to compensate the residue is too conservative to attain
an excellent response.

Remark 6: The total number of connection weight of dy-
namic mapping for vector function approximation (i.e.,

, ) using recurrent, multilayer and radial basis func-
tion (e.g., Gaussian function) neural-network are discussed as
follows [2], [11]–[13]:

where , and denote the number of input
layer for recurrent, multilayer and radial basis function neural-

network, respectively; , and represent the number
of hidden neuron, the order of nonlinear function, the number
of segment for every input signal (in general, it is odd), respec-
tively. For example, if , , , and

(in general, it is a minimum requirement) are selected,
then , and , re-
spectively. If the number or order of nonlinear function or input
layer or hidden neuron is large, the total number of recurrent
neural-network is still smallest. From the above discussions, the
RNN is more suitable for the approximation of complex (or cou-
pled) and dynamic mapping.

IV. CONTROLLER DESIGN

In this section, four subsections are arranged to discuss
the controller design. In the beginning, a forward controller
according to the nominal system is constructed such that
the system nonlinearity is canceled and the tracking error
is reduced. Then an error model resulting from the forward
control is achieved in the second subsection. The updating law
for weight matrix is given in the third subsection. Finally, a
DMNAVSC is designed to improve the tracking performance.
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A. Forward Control

A forward control to achieve an acceptable tracking perfor-
mance for the system (1) with nonlinearity (3) is described as
follows (e.g., [4]–[6], [8]–[10]):

(15a)
with

for (15b)

det

(15c)
where , , represents the diagonal entries of

, the input signal must satisfy the inequality
. Alternatively, if

, then ; if
, then .

Lemma 3: Applying the controller (15) to the system (1)
gives the following tracking error:

(16)
where denotes the unit matrix of dimension and

.
Proof: For simplicity, it is omitted.

B. Error Model Resulting from Forward Control

Because an accurate modeling of system with huge uncer-
tainties is difficult to attain, the tracking error based on a for-
ward control is generally not superior. To compensate these phe-
nomena, a DMNAVSC is affiliated with the previous forward
control (see Fig. 2). The error-model of closed-loop system in
Fig. 2 is depicted as follows:

(17)
where

(18)
If is imperfectly known or difficult to estimate and adverse
to a robust control, a neural-network based on the theory of uni-
versal approximator in last section will be employed to model it.
Furthermore, the vector function is function of
for ; i.e., the mapping between input (or

, ) and output is dynamic. Hence, it is
not suitable to use a multilayer-neural-network to approximate
the vector function . This is one of important motivation for
this study. Equation (17) can be rewritten as the following ob-
servable canonical form [7]:

(19a)

(19b)
where

the pair denotes the nominal system of (17) which
is known, controllable and observable. Furthermore, the system

state can be represented by the combination of
, , , and uncertainties

, . That is,

(20a)

where is function of and , is
the first columns of , and

(20b)

(20c)

Due to the fact (20a), no state estimator is required for the
controller [8]. This makes the controller design more practical;
however, the uncertainties occur. For the convenience
of controller design, the uncertainties rewrite as

(20d)

(20e)

and are function of .

C. Updating Law for Weight Matrix

First, the following sliding surface with integral feature is de-
fined.

(21)

where

diag

and

It is assumed that

A

(22)

where

ess.

denotes the maximum singular eigenvalue [25]. Then we con-
sider the following updating law for the weight matrix:

(23a)

(23b)

where

(24)

(25)

(26a)
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if or
if
tr

tr
if
tr

(26b)

(27)

(28)

where , , , and
is a known constant. The updating laws (23) have learning rates

, error function , and specific basis func-
tions in except and . Generally, the
learning rate should be chosen small enough to avoid the insta-
bility of closed-loop system. The selection of in (23)
is the reason for the boundedness of estimated weight matrix
without the requirement of PE condition. Otherwise, the drift of
estimated weight probably occurs [2], [26]. In general,

are very small to allow a possibility of effective learning
of . Too large values of will
force converge into the neighborhood of
zero. Under the circumstance, if are not very
small, a poor learning of or approximation
of nonlinear function occurs. The projection term
in (23b) ensures that as .

D. Discrete-Time Multivariable Neuro-Adaptive Variable
Structure Control

Based on the result of RNNRUBC in Section III, the fol-
lowing approximation of uncertainties as (see Fig. 3)
can be achieved.

(29)

where ,
and is described in (33). Because

only the uncertainties as are approximated by the
RNNRUBC, the number (or order) of , and the
value of (or ) are not necessarily large. The following
signal connected with the system uncertainties without showing
its argument is given:

(30)

Because the signals are unavailable, the
inequalities must be
used to obtain the upper bound of (30)

(31)

Some papers have used the upper bound of
as the control parameters, e.g., [27]. They are unreasonable. If

in (31) is assigned, the signal be-
comes a function of and . That is, the
upper bound of uncertainties can be arbitrarily small if and

converge to the vicinity of zero. This feature
is different from robust control that its upper bound of uncer-
tainty always exists. Before designing the proposed control, the
following lemma about the properties of trace operator is given.

Lemma 4: Define the trace operator as tr[] and tr
, where . Then

(a) tr tr tr , where , and are
three compatible square (or nonsquare) matrices

(b) tr .
Proof:

(a) Using the definition of trace gives the result.
(b) Using the definitions and tr

yields the result.
The following theorem is the main theorem of this paper.
Theorem 2: Consider the system (20) with (23) and the fol-

lowing controller (32):

(32)

where

(33a)

(33b)

if

otherwise

(34)
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Fig. 5. Responses of neuro-adaptive control: (a)r (t) (. . .), y (t) (—); (b) r (t) (. . .), y (t) (—); (c) u (t) (. . .), u (t) (—); (d) s (t) (. . .), s (t) (—); (e)
p (U) (. . .) p (U); (—); (f) p (U) (. . .), p̂ (U) (—); (g) Ŵ (t)�(t).
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where . The amplitude of
switching gains is achieved from the following inequality:

(35)

where

(36)

(37)

(38)

If the overall system satisfies Assumptions
A1–A4 and , then

are
bounded, and

as .
Proof: Consider the case of . Define the following

Lyapunov function:

tr

(39)

where

diag (40)

First, the case of is examined. By using (23), the change
rate of is described as follows:

tr

(41)

Similarly,

(42)

where is shown in (30) and

(43)

Then for are considered

tr tr tr

tr tr (44)

By inspecting (40)–(44) and (30), using the result of Lemma 4
gives the following equalities:

tr

tr

tr

tr tr

tr tr

tr tr

tr tr

(45)

In addition, the following inequality is achieved from (12) and
Remark 3:

tr

(46)

Using (41)–(46) and Remark 3 yields

tr

tr

tr

(47)

Assume that

(48)

Hence, for imply that ,
where

(49)

and , for .
If
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for , then . Similarly,
(or ) is assumed. Then,

(50)

where the inequality has used Assumption A4 and (43), the ex-
pressions of and are shown in (37) and (38). Because

and . The result (35) is achieved from
the inequality . Hence, the change rate of
Lyapunov function becomes

(51)

where . Then,
. Hence, outside of the domain making is

described as follows:

and

(52a)

where

(52b)

(52c)

Finally, from (30)–(34), is bounded.
Then the case of is examined. The above results are

the same except that in (44) has the extra second term in
the right-hand side of (53)

tr

tr

tr (53)

Substituting the in (26b) and part (b) of Lemma 4 into the
second term of (53) gives

tr tr

tr

tr

tr

tr

tr (54)

Because , if and
tr , then . That is, the pro-
jection algorithm (26b) makes the original more
negative [7], [19]. Because
and the value exists, then

as . Q.E.D.
Remark 7: The proposed contains the term

to compensate the upper bound
of residue of RNN. This feature does not appear in the previous
studies [2], [11]–[18], [20], [26], [27]. The size of dead-zone for

(i.e.,
) is generally smaller than that in robust variable

structure control (i.e.,
, where . The

responses in Figs. 4(d) and 5(d) indicate these features. Hence,
tracking performance of proposed control (i.e., Fig. 5(a) and (b)
is better than that of robust control (i.e., Fig. 4(a) and (b)).

V. COMPUTERSIMULATIONS

Consider two inputs and two outputs system with the fol-
lowing system matrices:

where the nominal coefficients are described as follows:

st channel

nd channel

st channel

nd channel and
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The poles and zeros of nominal system are: ,
(stable) and , (minimum

phase), respectively. The reference input is assigned as
. Consider the following uncer-

tainties those are not very small.

Then the poles and zeros of real system are: ,
, , , , (stable)

and , , , ,
(nonminimum phase), respectively. Furthermore, the vector
function of nonlinear uncertainty is described as follows (see
equation at the bottom of the page):

where

The responses of forward control are presented in Fig. 3. The
robust variable structure control is described as follows:

(see Remark 7). The
control parameters are chosen as follows:

where and . The simulation results are
shown in Fig. 4. As the uncertainties become large, the range
for the selection of control parameter in robust variable struc-
ture control becomes small. In other words, the rude choose of
control parameter probably causes the instability of closed-loop
system. From Figs. 3 and 4, one realizes that the responses of
forward control are poor, and those of robust variable structure
control are not excellent. The main reason of the result is that the

Fig. 6. Responses of neuro-adaptive control with small effect ofŴ (t). (a)
p (U) (. . .), p̂ (U) (—); (b) p (U) (. . .), p (U)(—); (c) Ŵ (t)�(t).

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 03:44:47 UTC from IEEE Xplore.  Restrictions apply. 



876 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 6, DECEMBER 2000

only use of forward control or robust variable structure control
can’t achieve an excellent tracking result as the system is sub-
ject to large uncertainties. This is one of important motivation
for the study. Then the control parameters of proposed control
are chosen as follows: , , ,

, , , , , ,
(upper bound of connection weight), ,
, , (learning rate),

, , , (e-modification) and
. The total number of weights is 198. Weights can be

initialized as random numbers but small. Without loss of gen-
erality, the initial values of weight are set to zero (i.e., no com-
pensation for excess uncertainties with respect to robust vari-
able structure control). Although too large values of learning
rate make the closed-loop system unstable, it is permitted to
have large learning rate properly with suitable e-modification
parameter to yield a better transient response. The output re-
sponses of neuro-adaptive control are presented in Fig. 5(a) and
(b). The maximum steady-state errors for channels 1 and 2 are
0.024 and 0.018 (or 2.4% and 1.8% of the amplitude of refer-
ence input), respectively. The corresponding control inputs and
sliding surfaces are shown in Fig. 5(c) and (d), respectively. It
can be seen that after transient response the control input and
sliding surface of proposed control are smooth. The response of
Fig. 5(c) is smoother and smaller than that in Fig. 4(c). Similarly,
the response of Fig. 5(d) is smaller and smoother than that in
Fig. 4(d). It reveals that the convergent region of sliding surface
(or tracking error) of proposed control indeed smaller that of ro-
bust control. Furthermore, the real and learning uncertainties are
shown in Fig. 5(e) and (f). Because of the strong compensation
of the upper bound of residue of RNN (compare Fig. 5(g) and
6(c)), the learning uncertainties do not approximate
perfectly. However, the controller has the ability of reducing the
uncertainties affecting the system performance by the compen-
sation of residue (i.e., ). Comparing the control in-
puts of forward control (i.e., Fig. 3(c)) and proposed control
(i.e., Fig. 5(c)) gives that only the second channel is adjusted
to achieve an excellent tracking performance. It indicates that
the proposed control is effective. Furthermore, the responses for
other control parameters (e.g., , , , ,

, , , ) different from the above are similar with Fig. 5.
For simplicity, those are omitted. It reveals that the range for
control parameter of the proposed control is larger than that of
robust control.

Due to strong compensation of the upper bound of residue of
RNN (i.e., ), the learning uncertainties have
a poor approximation of uncertainties [see Fig. 5(e) and (f)].
On the contrary, when the effect of [see Fig. 6(c)]
is reduced (i.e., the initial value of weight matrix and
learning rate are small), have a better approximation
of uncertainties [see Fig. 6(a) and (b)]. Some control parame-
ters chosen different from the above are , ,

, and , . The
maximum steady-state errors for channels 1 and 2 are 0.0605
and 0.0524 (or 6.05% and 5.24% of the amplitude of refer-
ence input), respectively. Those are a little larger than the results
shown in Fig. 5(a) and (b). The corresponding control inputs and
sliding surfaces are also smooth. For brevity, those are omitted.

The results reveal that as compared with the responses of for-
ward control, robust variable structure control and the DMNAC,
the proposed control indeed improves the system performance
including convergent region of tracking error, the smoothness
of control input and the easy selection of control parameter.

VI. CONCLUSIONS

The proposed controller includes a forward control based on
a nominal system and a discrete-time multivariable neuro-adap-
tive variable structure control (DMNAVSC) based on an
on-line approximation of huge uncertainties using a new recur-
rent-neural-network-with-residue-upper-bound-compensation
(RNNRUBC) for a compact subset. A projection algorithm for
the updating of feedback weight matrix is employed to ensure
a stable RNNRUBC. No state estimator or persistent excitation
is required for a DMNAVSC. Under some conditions, the
semi-globally ultimately bounded tracking with the bounded-
ness of estimated weight matrix is accomplished by Lyapunov
stability theory. An appropriate use of neural-network in control
application can increase benefits. The proposed scheme indeed
improves the performance of some robust control schemes,
e.g., the convergent region of tracking error, the smoothness
of control input and the easy selection of control parameter.
The results of simulation confirm that the developed theory is
used for the control of a class of multivariable systems with the
existence of nonlinearities and enormous uncertainties.
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