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A Discrete-Time Multivariable Neuro-Adaptive
Control for Nonlinear Unknown Dynamic Systems

Chih-Lyang HwangAssociate Member, IEEBNd Ching-Hung Lin

Abstract—First, we assume that the controlled systems contain [4]—[6], [8]-[10]. The more accurate a nominal model for the
a nonlinear matrix gain before a linear discrete-time multivari-  controlled system is used, the more excellent tracking perfor-
able dynamic system. Then, a forward control based on a nom- \3ance js achieved. If the tracking performance using a forward

inal system is employed to cancel the system nonlinear matrix gain trol bust trol 't satisfy th i . ¢
and track the desired trajectory. A novel recurrent-neural-network control or a robust control can't satisfy the specific requirement,

(RNN) with a compensation of upper bound of its residue is applied @ neural-network for a compact sub§es used to approximate
to model the remained uncertainties in a compact subse®. The the remained uncertainties which are dynamic.
linearly parameterized connection weight for the function approx- Most people used a multilayer-neural-network, combined
imation error of the proposed networkis also derived. An e-modifi- ity the tapped delays for the input, and a backpropagation
cation updatlr}g law with projection for welght_ matrix is emplo_yed training alaorithm to deal with the d n(:amic roblem [11]-[13]
to guarantee its boundedness and the stability of network without g aig y p :
the requirement of persistent excitation. Then a discrete-time mul- On the other hand, recurrent-neural-networks (RNNs) have
tivariable neuro-adaptive variable structure control is designed to  important capabilities not found in multilayer, such as dynamic
improve the system performances. The semi-global (i.e., for a com- mapping. Therefore, the RNN is better suited for dynamic sys-
pact subset(?) stability of the overall system is then verified by the - 1o 15 than the multilayer-neural-network [14]-[18]. An RNN
Lyapunk? v Sta?'hlty theo;y'hF'na”y’ S'méj Iat'onsna re given to demon- can cope with time-variant input or output through its own nat-
strate the usefulness of the proposed controller. :
_ _ B ural temporal operation. Hence, the less number of neurons for
Index Terms—Dbiscrete-time system, Lyapunov stability theory, - 1he RNN can model the uncertainties to achieve the required ac-
multivariable variable structure control, recurrent-neural-net- 141-118] or R K6). T teth id
work. curacy (e.g.,'[ 1-[18] or emar ).. 0 compensate the residue
of RNN, a simple network is established to estimate its upper
bound for the controller design. The proposed network is called
. INTRODUCTION “Recurrent-Neural-Network-with-Residue-Upper-Bound-

T is known that a conventionally designed linear controlideompensation (RNNRUBC)” (see Fig. 1). Besides, the sta-
I does not achieve an adequate performance over a varietP#fy of recurrent-neural-network-based control system is
operating regimes, especially if the system is highly nonlinedffficult because the corresponding dynamics are nonlinear in
[1]. It is also known that a robust controller design based onggliustable connection weights. However, the linearly param-
nominal system is not enough to stabilize the system with hugirized weight for the function approximation error of the
uncertainty [2]. There is a wide class of nonlinear multivariablroposed network is derived. As the authors know, this is the
systems that can be modeled by an interconnected nonlinear gt time to construct a neural-network with these features.
trix gain and a linear dynamic system, e.g., Wiener model, Ham-Furthermore, an e-modification updating law with projection
merstein model, hysteresis model [3]-[5]. Due to the progrekd, [19], [20] for the weight matrix is designed to ensure its
of microcomputer, a digital control is more implementable [7p0undedness and the stability of network without the require-
[8]. In this paper, a nonlinear matrix gain that is not necessarfijent of persistent excitation. The purpose of using a projec-
memoryless, combines with a linear discrete-time multivariabi®n algorithm for the feedback weight matrix between the neu-
dynamic system to represent a class of nonlinear multivariaf@1$ is to ensure a stable neural-network. Because the variable
systems. structure control possesses the following advantages: fast re-

Inthe beginning, a forward control based on a nominal systefAONse, less sensitivity to uncertainties and easy implementation
is applied to cancel the system nonlinearity and track the desiléd]—{24], a discrete-time multivariable neuro-adaptive variable
trajectory. A forward control is simple and very acceptable féitructure control (DMNAVSC, see Fig. 2) is designed to im-
industry. In general, a suitable design of forward control cdfove the system performances. Under mild conditions, the con-

make a poor dynamic system become a well-controlled syst¥gfgent region for tracking error of the proposed control can be

smaller than that of robust variable structure control [compare

Fig. 4(d) and Fig. 5(d)]. As compared with the robust variable

. . . __structure control, the proposed controller can deal with extra
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() f(x) phase [5]. Assumption A2 ensures that the linear system is con-
o »() > trollable and observable [7] and that the existence of a forward
X pf/2 éqr-(, W, control and the boundedness of uncertainties [see (15) and (18)].
! ; W Assumption A3 shows that in a compact set the nonlinear vector

of uncertainty relative to the nominal value is linearized and has
a norm-bounded value for the order equal to or greater than two.
re) Remark 2: For example, the known matrix mappi#t-) has

the following entries:

Fig. 1. Structure of RNNRUBC.
14 viyis — exp[=27vi1 (wi(t) — vi2)]

to robust variable structure control). This characteristic makes Julwi) = yir{l + exp[—27i1 (wi(t) — vi2)]}

the suggested control more practical because many neural net- 1<i<m, fi;(-)=0 fori#j (3)
work controls have a problem to assign an initial value for the

connection weight (e.g., [11]-[15], [17], [18], [20]). wherey,;;(1 <i <m,1 < j < 3)are known and,;(t) denotes

Finally, the semi-global stability (i.e., for a compact subsetn input signal for the mapping;(-). Another example is a
) of the overall system is verified by the Lyapunov stabilitjinear mapping, e.g., the argumentin (2c) greater than and equal
theory. Simulations are also given to confirm the usefulnesstoftwo are set to zero, i.eAF,(U) = 0. These two examples
the proposed control. The proposed scheme indeed improvesshtisfy Assumption A3 fof) = R™

performances of some robust control schemes. The objective of this paper is to construct a discrete-time mul-
tivariable neuro-adaptive contrdl(t) (DMNAC) for a class of
Il. PROBLEM FORMULATION nonlinear multivariable discrete-time systems in the presence of

uncertainties caused k¥ A;, AB;(1 <¢ < «/,0 < j < /),
yKF(-) which are not necessarily small. A forward control, i.e.,
U(t) = Us(t)asU,(t) = 0, isfirstemployed to cancel the map-

A HY () = ¢ 4B (¢HV(4), V() = F(U) (1) PingF(-)andtrackthe desired trajectafi(¢) thatis known and

bounded. If the tracking performance using a forward control or

where the signal§”(t), V(¢) andU(t) € ™, the mapping a robust control does not satisfy the specific requirement, a RN-
F.(-) = F(-)+ AF(-): ®™ — R™ is continuous, the map- NRUBC (see Fig. 1) is applied to model the remained uncertain-
ping F(-) is known and invertibleg—! is a backward-time shift ties for their input belonging to a compact subQeg Q. Then
operator (i.e.g~'Y(¢) = Y(t — 1)), ¢—¢ denotes d-step delay a discrete-time multivariable neuro-adaptive variable structure
operator and the polynomial matricels.(¢ 1) = A(g~ 1) + controlU,(t) (DMNAVSC) is designed to enhance the tracking
AA(g 1), Br(g7t) = B(g ') + AB(g 1) are described as performance (allude to Fig. 2). Finally, the semi-global stability
follows [7]: (i.e., U(t) € ) of the overall system is verified by the Lya-
punov stability theory (see Fig. 2).

Consider a class of nonlinear discrete-time multivariable s
tems:

AlgH=T+Ag + +Auqg @,

AA(gH =AA g 4+ AALg o >« (2a)  1Il. RECURRENTNEURAL NETWORK WITH RESIDUE UPPER
B(q—l) =Bo+Big '+ -+ Bsg ", BOUND COMPENSATION

AB(g Y= ABo+ABig ' + -+ ABgq 7, In this section, the RNNRUBC will be introduced such that

g >p (2b) the nonlinearly parameterized connection weight for the func-

tion approximation error is changed into a linearly parameter-

where matrix parameters;, B; for 1 <i < «,0 < j < gare ized form. The structure of RNNRUBC is presented in Fig. 1

known,AA;, AB;(1 < i < ', 0 < j < ) are known but that performs as an approximator described in the following ma-
bounded. Lety = max[«, 3 + 1]. It is assumed that: trix form:

Al: mandd > 1 are known.

A2 A(q™%Y), B(q1) are left coprimeA(q~1), A.(¢71), J(@, Wi, Wo, W)

B(q~!) are stable matrices, and §&} # 0. = WIe(WEBz@) + WL (5) @)
A3:  The unknown mappin@\F'(-) satisfies the following
equality: where
AFF~YU) = AF U, + AR U®#) + AF(U)  (2¢) W) e R™P, Wi (t) e RrxOFD),

W) e Rexe, z(t) = [z1 (¢ pIT e pnti)xt
WhereUb = [11]T, AFO: AFl c MM gre 3 () .’L’() [.’L' () ]

bounded AFy(-): R™ — R, [[ALU)]| < 6 ¢1()ando(-) € RP¥! denote output-hidden weight matrix,
where § is known, asl/(f) € & = {U(t) € hidden-input weight matrix, recurrent weight matrix, input

R |U(# - d+ 1) — Uo|| < 7} whichis acompact yector with a known constars backward-time shift operator,
set. The symbd| - || denotes usual Euclidean-norm. j e

Remark 1: The signalV (¢) is not available. It is not neces-
sarily to assume that the real linear system must be minimum g H6) = ¢ o[z} = 6zt — 1)]
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R(1) p(+t) U) 140} Y(t)
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Controlled System

R
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e

DMNAC (Proposed Control)

Fig. 2. Control block diagram of the overall system.

where The following lemma expresses the function approximation
o A 1 errorf = f — f in a linearly parameterized form.
6(x) = o(W; (1)z(t) + W3 (t)g~(5)) Lemma 1: Consider the function approximation error:

and sigmoid function with entry C e
f(fa W17 W27 W3)

bi) = UL toxp(ez)],  1<i<p =W (6@ - @WZ (OF(t) — 25" @)W (g (5))
+ W (8" @I W ()7 () + 2W5 (g (8)} + £4(t,T)
where ®)
z(t) = (W3 (8)z(t) + W5 ()a ™ (8))i where
respectively. Ifiv’s(t) = 0, then the network becomes a multi- o NP N
layer-neural-network. E4(t,T) = Wi (H)o' (@){W3 ﬂj(t) + W3 (t)a~ ()
The universal approximation theory is stated as follows: + WT &)+ WG (o)}
Theorem 1 (e.g., [11]-[13], [17]): Supposer(t) €  (a +WE ' @WE ) o)
compact subset &™), f(z): 2 — R™ is a continuous function T AT ) e =N 1
vector. For an arbitrary constant>> 0, there exists an integer + I/YlTO[WZ (f)a;(t) + Wi?’ (t)g™" (o)
(the number of hidden neurons) and real constant matfices + Wz (g™ (6)]” +¢5(@) (7)
W, andWs, whered < & < ||[Ws|lp < Ws,, < 4/psuch
that with O[-]? denoting a sum of order terms equal to and greater

than two of the argument

f@) = WIo(WEz(t) + W™ (o)) +¢,@)  (5) S
& (¥) = diagl6] (@), -, 5(T)} € R,

where || - || denotes the Frobenius norm (i.dW |3 = 6i(F) = dbi(2)/dz|.=z = 6:(F) (1 — 6:(T)),
trWIw] = u[WW?], W e RmX™), £4(z) denotes the 1<i<p.

approximation error vector satisfying (= )|| <e,Va(t) € Q,

andz(¢) is the same as (4). Proof: Subtracting (5) from (4) gives

Remark 3: The constant matrices in Theorem 1 are not
unique and satisfy the following inequalities:

WE+WEY(6+6)+e—WEs

=WIs+Wls+Wls+e (8)

!
IWillr £ Wi, [[Wallr £ Wap,

0 <e<|[Willp<Wam < vp whereW;, = W, — W, andé = & — . Taylor expansion

oc(WIz+W¥q (o)) aboutWlz + WIq1(5) yields
wherez, W1,,,, Wa,,, andWs,,, are known. The RNNRUBC is
a dynamic mapping. However, the multilayer-neural-network is Wiz +Wq (o))

a static mapping. Furthermore, the conditipWs||» < /p _ _ 7,1 T -1
is required for a stable neural-network. Therefore, an updating o U(WQ T W @)+ (W2 T W (@)

law for W3 (t) can be modified as a project algorithm [19], [20] - [W3 T+ Wy _1( )+ Wi 'q ()]
to ensure an effective learning. +OWIT +Wiqg (o) + Wig ()% 9)
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Substitutings from (9) into (8) gives

f=WIs4e;+ W +W[)
&' Wiz +Wiq (o) +
+OWST+Wiq (o) +

+ Wi (o)]
Wi'q ™t (6)1)-

(10) where||W1||r < Wi, + |[Wi||r and||5]| < ca.

Substituting the relation?; = W; — W;, 1 < i < 3, and
o = ¢ — ¢ into (10) yields
F=W{s' (Wi — Wiz +W's' (Wi -
g+ 8)+ WESWEq o —5)
+WEe' Wiz + WEe'Wiq (6 +6)
+ WL WL —WEg o —6)+ W6
+ (W + WhHoWz + Wi o)+ Wia (o))
+ey. (12)
Simplifying (11) gives the results (6) and (7). Q.E.D.
Remark 4: The approximatiory (z, Wy, W», W3) is used in
the control law to cancel the unknown nonlinear functfgm).
The first and second term gﬁ(a: Wl, W, Wg) are canceled by
the updating law of weightd, (¢), W(t) andWs(t). Although
the residue (¢, 7) is unknown, an upper bound §& (¢, %)]|
can be achieved by the following lemma.

Lemma 2: The residue ternfié;(¢,)|| can be bounded by
the following inequality:

~ _ =T
les (&) < W, T'(#)
where the unknown parameter vecidt,
bounded and the known function

L(t) = (@ [ Wil [Wall . [ Wl )
= =@ IW@lle sl
[EOIWiOIe  [[ZONW2@)llr
AGIIZAGIRE
Proof: From (9) and triangular inequality, the high-order
terms are bounded by

|OW5'Z + Wi'q (o) + Wi ¢ H(&)
=6 - &' Wiz + Wiq o)+ Wig (3]l
< gl + 11 LW ezl + WS Nl el
+ W ||Fll5]]
< o1+ e[ (Wap + W2l 2|
+ c3(Wam + [[Wsl|F) + c1 | W3] | 7]
< (e + e2e3Wap,) 4 coWoy,, ||T|
+ caler + e3)|[Wallr + cal|| [ Wallr

W)

(12)
> 0e R*lis

(13)
where
ol < e, N8l S e, ol £ cas
IWallp < Wap + [Wallr - and [[Wallp < Wsp, + [[Ws| .
From (7) and (13)||¢ || is then bounded by
€41l £ (Wim + Wil p)e2 {WamlIZI| + (Wap + [|Wsl|r)ex
+ Wamea + | Wallpes}
+ W1 || pe2(Wam + [[Ws|| F)es
+ Wim{(c1 + c2csWap,) + caWon||Z||
+ caer + e3) |[Wallp + c2l|z)| [ Wallp} + &
< A{[er + e2(c1 + 3+ ca)Wa |[Wi, + £}
+ {20 Wi Wam b || + {c2(e1 + e3)Wam } W1 o
+ {2c2(e1 + c3)Wim} | W[
+ {e2Wan HIE Wil 7 + {eaWen } 1] [Walle
+ {ca(er + 2c3)} |Wall p || W
=Wir (14)
Q.E.D.
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Rgmark 5: Although £+(¢, %) is unknown, an updating law network, respectivelyp, n,.q andn,., represent the number
for W4(t) is designed to compensate the upper bound of thi$ hidden neuron, the order of nonlinear function, the number

residue, i.e_|L§'f(t,E)|| = WZI)I(t). Similar as Remark 3, of segment for every input signal (in general, it is odd), respec-
W4l = [W4]|r < Wy, Furthermore, without using an up-tively. For example, ifn = 2, k = 2m, p = 2, noa = 2 and

dating law ofW,(¢) but using the estimation d¥ , from (14) n.., = 3 (in general, it is a minimum requirement) are selected,

to compensate the residég(¢, ) is too conservative to attainthen Npyy = 18, Ny v = 22 and Npppy = 7562, re-

an excellent response. spectively. If the number or order of nonlinear function or input
Remark 6: The total number of connection weight of dy-layer or hidden neuron is large, the total number of recurrent

namic mapping for vector function approximation (i,(z) € neural-network is still smallest. From the above discussions, the

™, m > 2) using recurrent, multilayer and radial basis funcRNN is more suitable for the approximation of complex (or cou-

tion (e.g., Gaussian function) neural-network are discussedpsd) and dynamic mapping.

follows [2], [11]-[13]:

Nrnvy=mXxXp+px (nryy +1)+p X p, IV. CONTROLLER DESIGN
N = > . . . .
nRNN = F, p=2 In this section, four subsections are arranged to discuss
Nypy =m X p+px (nyon +1), the controller design. In the beginning, a forward controller
LN =k X ngpg, Nord > 2 according to the nominal system is constructed such that
Npppy = n"REFN 41 the system nonlinearity is canceled and the tracking error

seg

is reduced. Then an error model resulting from the forward
NRBFN = k x Nord, Nseg > 3

control is achieved in the second subsection. The updating law
wherengy N, nayy andngpry denote the number of input for weight matrix is given in the third subsection. Finally, a
layer for recurrent, multilayer and radial basis function neurdDMNAVSC is designed to improve the tracking performance.
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A. Forward Control state can be represented by the combinatian@§, - - -, e; (¢ —
A forward control to achieve an acceptable tracking perfofe = 1) wwi(t —d), -+, w,i(t — d — v + 2), and uncertainties
mance for the system (1) with nonlinearity (3) is described &s(t): 1 < ¢ < m. Thatis,
follows (e.g., [4]-[6], [8]-[10]): X(t)= K Z(t)+ K2 Zs(¥) (20a)
Us(t) = F~*(p) (15a) wherek; € ®**("+™ is function of A andB, K» € R"*" is
with the firstn columns ofK;, and
1 1+ vi1viz — varpi(
FMps) = 2 — 5o log |- 28 = i) 20 =l alt-1) - af-v+D
1<i<m, f;'(p;) =0 fori#j (15b) o e e de 7
. d ’ 1 1 1 UpI\t — Upl\t — G — 7
p(t) = {q"Adj[B(q~")]A(q™ ) R(t)}/def{B(q )] (b —d) -+ g (t—d—y + 2T
(15C) c §R(n+m)><l (ZOb)
wheref;1(-), 1 < i < m, represents the diagonal entries of
F~1(), the input signap;(t) must satisfy the inequalitit + 2o = [¢1(t) ¢t =1) -~ Gt -—~v+1)
virvis — Y pi(O]/[1 + vapi(t)] > 0 Vt. Alternatively, if o () Pt —1) - Pt —y+ D]
vir > 0,then—1/v1 < pi(t) < (1+vavis)/vir Vit if C R (20c)

vir < 0,then(l+yiyis)/vir < pi(t) < —1/vi1 Vt.
Lemma 3: Applying the controller (15) to the system (1)
gives the following tracking error:

E(t) = R(t) - Y (t) = —A™ (¢ g~ Y B¢ HAF(U)

Due to the fact (20a), no state estimator is required for the
controller [8]. This makes the controller design more practical;
however, the uncertaintids, Z4(t) occur. For the convenience
of controller design, the uncertaintiés 74 (¢) rewrite as

—1 —1 —1/ —1yy—1 _
T i KaZo(t) = Kalg (1) (200)
A )ATH e Bea OIE(U)) (16) Ko(g )=k kgt - k3T
wherel denotes the unit matrix of dimension andU(t) = nxcm
Uf(t). eR (20e)
Proof: For simplicity, it is omitted. andk3;(1 < i <) € R™™ are function oK.
B. Error Model Resulting from Forward Control C. Updating Law for Weight Matrix

Because an accurate modeling of system with huge uncerFirst, the following sliding surface with integral feature is de-
tainties is difficult to attain, the tracking error based on a fofined.
ward control is generally not superior. To compensate these phe- S(t) = AS(t — 1)+ D1 E(t) — DoE(t — 1) (21)
nomena, a DMNAVSC is affiliated with the previous forwardWhere
control (see Fig. 2). The error-model of closed-loop system in

Fig. 2 is depicted as follows: St =[s1(t) sa(t) -+ sa(D]T € R,
Al HE®) = ¢ ‘Bl HU() + AlgHe(t)  (17) 1Im<Asl,
where D; =diaddij;), |d2i/drii| < 1,
() = —A"Hg g HB(¢ HAF(U) 4+ [AB(g ) i=1,2andl < j < m.
—(I+AA(gHA g )T AA (™) It is assumed that
- ATHg B (g HIEAU)} (18) A4 ||(CB)™'[I — ¢ 'CAK (g V))A T (g g !
If ®(¢) is imperfectly known or difficult to estimate and adverse Bo(q HAF o =58 < 1 (22)

to a robust control, a neural-network based on the theory of uni-

versal approximator in last section will be employed to model fvnere B o

Furthermore, the vector functiab(t) is function ofU (t —d — i) 1A(g™ )|l = €8S, sup  A[A(c )], A[]

fori = 0,1,---; i.e., the mapping between inpli(t — d) (or _ | 0sesar

p(t — d), U, (t — d)) and outputd(¢) is dynamic. Hence, it is d_enotes the maximum singular eigenvalue [25]. Then we con-

not suitable to use a multilayer-neural-network to approxima?éder the following updating law for the weight matrix:

the vector functior®(t). This is one of important motivation for Wit +1) = W (t) + Ai(t) — niWi(t),
this study. Equation (17) can be rewritten as the following ob- i=1,2,4 (23a)
servable canonical form [7]: W % &
3(t+ 1) = Wa(t) + Aa(t) — mWs(t)
= ] — =
X(t; 1) g);(t) + il St—d—+1) (igs) _ POWs(t) (23b)
(1) = OX (1) + 2(1) as)
where o
X0 = [en(® waalt) e wanld M) = alo () - @WE OO
a®) o wm €R" SRS ()18 (02 (24)
the pair(A, B, C) denotes the nominal system of (17) whichA2(t) = a2 W(£)S™ ()W ()5"(V)/2 (25)
is known, controllable and observable. Furthermore, the systef (1) = asq™*(6)ST ()W (t)s' (D) (26a)
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4

0, if [Ws®)|r < /p,or Because the~signaII§/i(t) (1 < 4 < 4) are unavailable, the
if || Wa(t)||» > VP inequalities||W;(t)|| < Winm + [|[Wi(t)||r(1 < ¢ < 4) must be
Pt) = tr{[As(t) — 773W3( O Wa(t)} <0 used to obtain the upper bound of (30)
tr{[As() — naWs(®)]* Wa(t)} /[ + | Wa(t)|[3], QI < fu = [Wim + 1= n0) |Wallp] |6 — 6'WET
if|We@®llr=vp —26'Wiqg (5)|
\ tr{[A?)(t) a 773W3(t)]TW3(t)} >0 ( b) [Wan (1 _ 772) ||W2||F] ||W1Té'/|| ||T||
26 N iy
W- - _ T&/ —1 &
Ag(t) = adl|SOILE)/2 (27) i?v[v ’ :(f_ ”;’")H!;V ﬁ']'ﬂlr'|'|wl Mol
T(t)=[p"(t—d) UL (t—d) b (28) (o

. + 15| {enlls — 8" W' — 26" Wi'q (5)]% /4
where0 < r, 0 < ;0 < m; < I{l < i< 4) andb + ol WE 6/ IPINIP /4 + asl[W] & |Plla (@)1
is a known constant. The updating laws (23) have learning rates 3

a;(1 < 4 < 4), error functionS(¢), and specific basis func- +auf[LI7/4} (31)

tions inA;(#) (1 < i < 4) excepta; andS(¢). Generally, the Some papers have used the upper bouridgt) (1 < i < 4)
learning rate should be chosen small enough to avoid the insia-the control parameters, e.g., [27]. They are unreasonable. If
bility of closed-loop system. The selection @fiv;(¢) in (23) m = 0(1 < i < 4) in (31) is assigned, the signg} (¢) be-

is the reason for the boundedness of estimated weight mattmes a function of(¢t) andW;(t) (1 < ¢ < 4). That is, the
without the requirement of PE condition. Otherwise, the drift afpper bound of uncertainties can be arbitrarily smadl(if) and
estimated weight probably occurs [2], [26]. In generg{l < W;(t) (1 <4 < 4) converge to the vicinity of zero. This feature

¢ < 4) are very small to allow a possibility of effective learnings different from robust control that its upper bound of uncer-
of Wi(t) (1 < i < 4). Too large values of;(1 < ¢ < 4) will  tainty always exists. Before designing the proposed control, the
force W;(t) (1 < @ < 4) converge into the neighborhood offollowing lemma about the properties of trace operator is given.
zero. Under the circumstance W, (1 < i < 4) are not very ~ Lemma 4: Define the trace operator as-jrind t{4] =
small, a poor learning of’; () (1 < i < 4) or approximation > ra;, whereA € R, Then

of nonlinear function occurs. The projection tedh(¢)Ws(¢) (a) t{ABC] =tr[CAB] = tr[BC A], whereA, B andC are

in (23b) ensures thdiVs(t)||r < /p ast — . three compatible square (or nonsquare) matrices
(b) t[WIW] = ~[IW|% + W% — W ]I7]/2.
D. Discrete-Time Multivariable Neuro-Adaptive Variable Proof:
Structure Control (a) Using the definition of trace gives the result.
, nition ot frace gives .

Based on the result of RNNRUBC in Section I, the fol- (P) US'”29 the definitiond¥V’ = W — W and (W= W] =
lowing approximation of uncertainties &t) € €2 (see Fig. 3) W% yields the result.
can be achieved. The following theorem is the main theorem of this paper.

Theorem 2: Consider the system (20) with (23) and the fol-
P(l/') — _Dl [I + qflCAKQ(qfl)]Afl(qfl)qfd-l—l{B(qfl) |0W|ng controller (32)

JAFU, + AF (p(t) — Uy (1)) + AF>(p — U,)] Ut —d+1)=Uy(t—d+1)+ Ut —d+1) (32)

+[AB(gH) = (I +AA(g™H) A (¢ ) T AA(g™Y) where

AN Br(a D [ARU + (I + AF) U (t—d+1)

~(p(t) = Ue(t)) + AF2(p — U]} =U. (t—d+1)— (D:CB)y" YW (t)s(t)
=Wio(W3 ¥ +W5q " (0)) +e(P) (29) +AT@®) /2 = mWE D) [6(t) — 6" OWE ()T (t)

wherelle ;(T)|| < e, = {U(t) € Q| |U(t — d+1) — Uy|| < +26'(HWH (H)g (9]

v < 7} andUg(t —d+ 1) is described in (33). Because T WlT(t)&/(t)[Ag(t)/Q - 7721/‘/2 (BOI()
only the uncertainties a&/(t) €  are approximated by the + W8 (1) [A3 (1) — 2mW5 (B)]lg™ 1 ()
RNNRUBC, the number (or order) dV, W, and W 3 the +a45( )rT( () /4 + (1 —ng)S(¢ )W (t)
value ofe () (or £) are not necessarily large. The following TSI (33a)
signal connected with the system uncertainties without showmg%7
its argument is given: eqt —d+1)
—(DlCB)_l{DlCAKlZ(t) — DyE(t)
Q=W{[6 - &WIT - 25'Wiq (5] — (1= NS5} (33b)

+ WES'WIT 4+ 2WE g 4(6)] + &5 Up(t —d+1)

— (AT /2= m W[5 — 8'W)'W - 26'Wi'qg (5)] —E(t)fo(t) (D1CB)*5(t)/

~ oA/ mi T i lst 1>||+ oo )”}33 A+B0) (39

o A = i > — +
~WrolAs —2m Wl (9) () TR
— g STTT /4 — (1 = ny) SWIT/||S]]. (30) 0, otherwise

7
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Fig. 5. Responses of neuro-adaptive controlrd}) (.. .), y1(t) (—); (b) r2(2) (- -.), y2(t) (—); (€) ur(t) (- .), ua(t) (—); (d) s1(t) (--.), 52(t) (—); (€)
p1(U) () p1(U); () () p2(U) (-..), p2(U) (—); (@) W (HI(2).
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where0 < 1 < (1-75)?/(1+3)? < 1. The amplitude of By inspecting (40)—(44) and (30), using the result of Lemma 4
switching gaing(¢) is achieved from the following inequality: gives the following equalities:

E(t) > E(t) > &() >0 (35) —2tr[WIA /oy = —STWL[6 — 6'WIT —26'WEq(6)]
—2tr[WT As]/ay = —STWI'WIT
—2tr[W1 As)/as = —2STWI6'WEq 4 (5)
(AT AL] — 21 W ALY oy

= STIAT /2= mWT[6 — /WS T — 26" W3 g7 (5)]
{tr[AT Ag] — 2m0 tr[WF Ag]} s

= STWIG' AL /2 — WS |

where

$1,2(8) = ha(t) £/ PE(E) — ha(t) (36)
hl(t) A= B2USON/IA+ BB - (1= F)  (37)
ha(t) = (1= B)*[f; (&) + 2/,[IS ()|

ISP L2 38 :

IS B8 (AL Ag] — 205 W E ]}

If the overall system satisfies Assumptions = STWie! [Ag — 2sW5'lg™1(6)

Al-A4 and |[W3(0)|lr < W, < /P, then (AT A] — 20y r[WE ALY oy

{Wi(t), Wa(t), Wa(t), Wa(t), S(),U(t — d + 1)} are = 8Ty STTT /4 — nySWIT /)51 (45)

bounded)|Ws(t)|r < /p and

_ _ _ _ In addition, the following inequality is achieved from (12) and
SO < 20 =) A+ f(0/[1 =B = (1+8)u]  Remark 3:

T ot Consi . _ §7ler = SWET/|SI|] - 2] A/
Proof: Consider the case éf € 2. Define the following <1ISI 141l - ISIWET — [SIWET < 0. (46)
Lyapunov function: = £f 4 ;1 =0

4 Using (41)-(46) and Remark 3 yields
V(W17W27W37W47 Z WTW]/C)C1+STS/2
4
i: — _ W (W — T
=1
where + i (Wi = W)' (Wi — Wi} e
+ASTAS/2 4+ STD,CBYU,,
=[Willr IWallr IWsllr [[Wallr  [IS]]], + 8T[ef — SWEL/|S|] - 2 (W Au]/cus
P=diagl/ay 1/as 1/az 1/as 1/2]. (40)

4
< - Z {m(2 = n) [Will % = 20:(1 = ni) Wi || Wil |
First, the case aP,. = 0 is examined. By using (23), the change - -
rate of V (Wy, W, Ws, Wy, 5) is described as follows: — Wi, Hai+ ASTAS/2 4+ ST D CBYU,,,. (47)

5 4 . ) Assume that
AV = STAV = 37 (Wi — A+ Wi)T
i:1~ =t o p— _[771‘(2 772)||W||%“ 2771(1_771) zmHWiHF
C (Wi = A i) = Wi Wil /e — W2/ < AWl /ar,  1<i<4. (48)

+ ASTAS/2 + STAS. (41)
Hence, AV, < —\,V; for1 < ¢ < 4imply thatF}/a; < 0,
Similarly, where
AS = D|[CAK > + qI]®(t) + (D1CB)Usy, Fi= — (2 —m) — Al
=Q + (D1CB)XUs, (42) { [H Vi mi(1 — 1) Wi r
) W _ T T m
(2 =) — N
where( is shown in (30) and mi(2 = )
(1 -\ ) Wern (49)
S =1+ (CB) Y + ¢ 'CAK A ¢ B, AF,. (43) T 2 =) — A2
ThenAV; for 1 < ¢ < 4 are considered andn;(2—n)—X > 0,1 > n > X\ > Ofor1 <i<4.

If
AV, = {—2 tr[WiTAi] + 29, tr[WiTWi] tr[A;‘F Az]

— 2m; r[WT A + 0 W Wil e, @4 Willr = [(1 =) + V1= N IniWim /[0:(2 = m:) — A
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for1 < < 4, thenfj(1 < i < 4) < 0. Similarly, AV; < - tr[(As — s Wa) T W]/ (k + ||Ws||%)
—uVs (or AV 5 = AV — uV5 < 0) is assumed. Then, — 21r[(As — 7731/1/3)TI/T/?)]2/(,i + ||W3||%“)
= tr[(As — 3 Wa) T Wa)?
AV = UL ST (D,CB)T (D,CB)SU,, /2 + ull oo 3) Wl )
+ ST(D,CB)YU,,, + nSTS/2 Becausd|Ws|[3: < W3, if [Wallr = 6 > Wa,, and
£ f2 £f? f2 tri(As — n3sW3)T W3] > 0, thenFs, < 0. Thatis, the pro-
= 21-5p + 1-3 + 5 jection algorithm (26b) makes the origizaV; < —\3V3 more
LIS NHSHQ negative [7], [19]. Because < & < [[W3(0)|| < Wam < /P
+ 1S fq — 14 = 5 and the valu®d < & < ||W3| < W3, < /p exists, then
R _ IWsl| < /5 ast — . Q.ED.
= [ € —2h& + ha}/{2(1 - B)7} (50)  Remark 7: The proposed/.,(t — d 4 1) contains the term

(1—ny)SEWL (H)T(t)/]|S(t)|| to compensate the upper bound
where the inequality has used Assumption A4 and (43), the @fresidue of RNN. This feature does not appear in the previous
pressions o, andh, are shown in (37) and (38). Because  studies [2], [11]-[18], [20], [26], [27]. The size of dead-zone for

o B B Upo(t — d+ 1) (e SO > 21— B) L+ B)f,(0)/[(1 -
ISII > 2(1 = B) (L +8)f,/[(1 = B)* — (14 B)*ul B)2—(1473)%u]) is generally smaller than that in robust variable
structure control (i.eJS(t)|| > 4(1+B)f,(#)/[(1—3)* -
hy > 0andh? — hy > 0. The result (35) is achieved from (1 + 3)?u], wheref (t) = Bo + B||Ucy(t — d + 1)]|). The
the inequality¢? — 2h,€ + ho < 0. Hence, the change rate ofresponses in Figs. 4(d) and 5(d) indicate these features. Hence,

Lyapunov function becomes tracking performance of proposed control (i.e., Fig. 5(a) and (b)
is better than that of robust control (i.e., Fig. 4(a) and (b)).
4
AV <=3 AV — Vs < — muin (%M)V =-XAV (51) V. COMPUTER SIMULATIONS
=1

Consider two inputs and two outputs system with the fol-
where0 < Ag < 1.ThenV(t+1)— (1 - XA)V(t) < lowing system matrices:
0. Hence, outside of the domai? making AV < —XoV is
described as follows: A(g Y = {1 0} {“111 t A a2+ Aall?} -1

01 a121 + Aaiar  a122 + Aarz
D={ZeR0<|Wi|r <W} 1<i<4and n a1 + Aazir a2 + Aasra
' 0< 5] < 5%} (52a) | G221 + Aaza1 a2 + Aazr
B B n [Aazii Aaziz| _3
where | Aazar  Aazao
n Aaq1n Aa412}
W 1 - 777 \/ ]777I/V7m/ 777 2 - 777) )\7]5 -Aa421 ACL422
1<i< (52b) B¢ = boir + Abo11 o1z + Abom}
5" > 2A1-F)(1+ /3)fq/[(1 ~B)? - (1+ 7). (520) boae o Bboar 022 o Ao
+ biin + Abiyn a2 + Ab112:| -1
Finally, from (30)—(34), is bounded. D12y + Abiay a2 + Abix
Then the case aF,. # 0 is examined. The above results are " Abyyr Absia| o
the same except thatVs in (44) has the extra second term in | Abz21 Dbz
the right-hand side of (53) N [ Absqs Ab312:| s
S | Abza;  Absao
AVs < = {32 =) (Wl = 205(1 = 13) Wan, F.(U) = F(U)+ AF(U)
NWallp — i3 Wi, } s + {2P. tr[W3 Wy , o ,
— 2P tr[(As — 3W3)TW3] where the nominal coefficients are described as follows:
+ P2 tr[WgW?)] }/a?) —A3Vs. (53) a111 = — 0.6, a1 =0.2, a;10=04, ass=-02,

Substituting theP,. in (26b) and part (b) of Lemma 4 into the
b1120 =0.5 (1St Chann@I, a1o1 = —0.5, a9 = —0.2,

second term of (53) gives
apzz = 0.6, ag2 =03, bo21 =05, b2 =1,

ng = 2P, tr[WgW;g] — 2P, tr[(Ag — 7’]3W3)TW3] bo2o = 2, bioa = 0.5 (2nd Channel, 1 =1,
+ P2 tr[WE Wy 2 =1, 731 =0.35 (Istchannet -~y = 2.5,
= [IWsllF + 11Wallz — [Wsll7] Y22 =0.5, 71 =25 (2ndchanngl, and d=1.
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The poles and zeros of nominal system ar@:1338+-0.58087,
0.1338 £ 0.19595 (stable) and—0.5602, 0.2789 (minimum
phase), respectively. The reference input is assigned
R(t) = [sin(2nt) sin(27t)]*. Consider the following uncer-
tainties those are not very small.

Aapr = 0.3, Aasp =025, Aazy; = 0.05,
Aagr = —0.02, Aayo=—0.2, Adazs = —0.1,
Aazrz = 0.02, Aayn =0.01, Abgy = 0.2,
Abyyr = 0.5, Absyy = —0.02, Abg; = —0.01,
Aboia = 0.2, Abjps = —1.8, Abys = 0.01,
Absys = 0.005, Aaip; =0.2, Aags = —0.12,

Adgiz = 0.03, Adass = —0.02, Adarss = —0.12, “o 200 400 _ 600 800 1000
Adsss = — 0.1, Aages = 0.03, Aagmm = —0.01,
Abpar = 0.1, Abray = —0.2, Abgs; = 0.025, 0
Absor = 0.02, Abgos = —1.46, Abos = 0.5, 302
Abazs = 0.04, Abszs = 0.02. 'E-OA
0-0.6

Then the poles and zeros of real system &u@432 +0.77955, 5
0.0373 £ 0.38735, —0.5287, 0.2430, 0.1581, —0.2134 (stable) & i
and—0.0108+0.14815, —34.6021, —1.2250, —0.0401, 0.0556 % -1
(nonminimum phase), respectively. Furthermore, the vect =-1.2¢
function of nonlinear uncertainty is described as follows (se 3_, 4?
. @ T
equation at the bottom of the page): ©

1.6
AF(U) = AFF~YU) — (AFy U, + AFU(t)) -1.8
-2 : - : *
where 0 200 400 _ 600 800 1000
~[0.22 0.326 [ 006 0.02 (b)
Afo= [0.02 0.026} » Af= [0.0168 0.012} ' 0.4 ' '
The responses of forward control are presented in Fig. 3. TI | 0.35
robust variable structure control is described as folldW&: — 3
d+1)=Uc(t—d+1)+Usu(t—d+1) (see Remark 7). The § 03
control parameters are chosen as follows: 5 0.25f
o
S
Bo = /0.001, [B=0.01, p=0.0085, B 02 1
o
_ _ _ _ 4 D
di11 = di22 =1, da; = 0.3, dazz = 0.25, g 0.15
A=1, &) =&@1) 4 /2 —hy (1 —0.98¢~I5MIy O
0.1
whereé, = 0.053 and¢; = 100. The simulation results are 0.05
shown in Fig. 4. As the uncertainties become large, the ran )
for the selection of control parameter in robust variable struc 0 ‘ : : 8‘0 1000
ture control becomes small. In other words, the rude choose 0 200 400 Time 600 0

control parameter probably causes the instability of closed-loc ©

system. From Figs. 3 and 4, one realizes that the responses or

forward control are poor, and thqse of robust variable SUUCIUER, 6. Responses of neuro-adaptive control with small effedi/aft). (a)
control are not excellent. The main reason of the resultis that thet) (.. .), 5+ (T) (—); (b) p=(T) (- - .), p=(U)(—); () WT (H)T().

AF(U) = 0.666 + 0.06u1 + 0.02us + 0.02sin(2uus) + 0.12sin(0.5u1us )
o 0.132 + 0.0168u; + 0.012us + 0.15 sin(wiusz)
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only use of forward control or robust variable structure control The results reveal that as compared with the responses of for-
can’t achieve an excellent tracking result as the system is sward control, robust variable structure control and the DMNAC,
ject to large uncertainties. This is one of important motivatiaiie proposed control indeed improves the system performance
for the study. Then the control parameters of proposed contiatluding convergent region of tracking error, the smoothness
are chosen as followg: = 0.03, do;1 = 0.22, daoo = 0.01, of control input and the easy selection of control parameter.

50 = 07,]) = 11, b= 1, ern = 1, Wgnl = 1, Wg,n = 09,

Wy = 1 (upper bound of connection weight}; = 0.098, VI. CONCLUSIONS

as = 0.012, ag = 0.0008, oy = 0.312(learning rate)y; = .

0.66, 7 = 0.03, 713 = 0.04, n, = 0.56 (e-modification) and The.proposed controlle'r mcludgs aforw.ard.control based on
% = 0.001. The total number of weights is 198. Weights can bR nommgl system and a discrete-time multivariable neuro-adap-
initialized as random numbers but small. Without loss of geHye_ variable _strugture control (DM’\_IA\_/SC) _based on an
erality, the initial values of weight are set to zero (i.e., no conpn-line approximation _Of hug_e uncertainties using a new recur-
pensation for excess uncertainties with respect to robust vafnt-neural-network-with-residue-upper-bound-compensation
able structure control). Although too large values of Iearnir%NNRUBC) for a compact subset. A projection algorithm for
rate make the closed-loop system unstable, it is permitted ity UPdating of feedback weight matrix is employed to ensure
have large learning rate properly with suitable e-modificatich Stable RNNRUBC. No state estimator or persistent excitation
parameter to yield a better transient response. The output |§e_re_qU|red for a DMNAVSC. Under some conditions, the
sponses of neuro-adaptive control are presented in Fig. 5(a) R"-9lobally ultimately bounded tracking with the bounded-
(b). The maximum steady-state errors for channels 1 and 2 3f$S Of estimated weight matrix is accomplished by Lyapunov
0.024 and 0.018 (or 2.4% and 1.8% of the amplitude of refeftPlity theory. An appropriate use of neural-network in control
ence input), respectively. The corresponding control inputs aﬂapllcatlon can increase benefits. The proposed scheme indeed
sliding surfaces are shown in Fig. 5(c) and (d), respectively.'Pf'proveS the performan_ce of Some robust control schemes,
can be seen that after transient response the control input &rf: (e convergent region of tracking error, the smoothness
sliding surface of proposed control are smooth. The responsé@bcontrol input and the easy selection of control parameter.
Fig. 5(c) is smoother and smaller than that in Fig. 4(c). Similarly,€ results of simulation confirm that the developed theory is
the response of Fig. 5(d) is smaller and smoother than that4f€d for the control of a class of multivariable systems with the
Fig. 4(d). It reveals that the convergent region of sliding surfag¥istence of nonlinearities and enormous uncertainties.

(or tracking error) of proposed control indeed smaller that of ro-

bust control. Furthermore, the real and learning uncertainties are ACKNOWLEDGMENT

shown in Fig. 5(e) and (f). Because of the strong compensationrhe aythors would like to thank Prof. Y.-H. Chen in Mechan-

of the upper bound of residue of RNN (compare Fig. 5(9) anghy| Engineering, Georgia Institute of Technology, Atlanta, for
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perfectly. However, the controller has the ability of reducing the
uncertainties affecting the system performance by the compen-
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